Info
Info
News Article

Exceptional Sense Of Touch For Robots, Prosthetics

News

Robots and prosthetic devices may soon have a sense of touch equivalent to, or better than, the human skin with the Asynchronous Coded Electronic Skin (ACES), an artificial nervous system developed by a team of NUS researchers.

The new electronic skin system has ultra-high responsiveness and robustness to damage, and can be paired with any kind of sensor skin layers to function effectively as an electronic skin. The innovation, achieved by Assistant Professor Benjamin Tee and his team from NUS Materials Science and Engineering, was first reported in prestigious scientific journal Science Robotics on 18 July 2019.

Faster than the human sensory nervous system
“Humans use our sense of touch to accomplish almost every daily task, such as picking up a cup of coffee or making a handshake. Without it, we will even lose our sense of balance when walking. Similarly, robots need to have a sense of touch in order to interact better with humans, but robots today still cannot feel objects very well,” explained Asst Prof Tee, who has been working on electronic skin technologies for over a decade in hopes of giving robots and prosthetic devices a better sense of touch.

Drawing inspiration from the human sensory nervous system, the NUS team spent a year and a half developing a sensor system that could potentially perform better. While the ACES electronic nervous system detects signals like the human sensor nervous system, unlike the nerve bundles in the human skin, it is made up of a network of sensors connected via a single electrical conductor.. It is also unlike existing electronic skins which have interlinked wiring systems that can make them sensitive to damage and difficult to scale up.

Elaborating on the inspiration, Asst Prof Tee, who also holds appointments in the NUS Electrical and Computer Engineering, NUS Institute for Health Innovation & Technology, N.1 Institute for Health and the Hybrid Integrated Flexible Electronic Systems programme, said, “The human sensory nervous system is extremely efficient, and it works all the time to the extent that we often take it for granted. It is also very robust to damage. Our sense of touch, for example, does not get affected when we suffer a cut. If we can mimic how our biological system works and make it even better, we can bring about tremendous advancements in the field of robotics where electronic skins are predominantly applied.”

ACES can detect touches more than 1,000 times faster than the human sensory nervous system. For example, it is capable of differentiating physical contact between different sensors in less than 60 nanoseconds — the fastest ever achieved for an electronic skin technology — even with large numbers of sensors. ACES-enabled skin can also accurately identify the shape, texture and hardness of objects within 10 milliseconds, ten times faster than the blinking of an eye. This is enabled by the high fidelity and capture speed of the ACES system.


The ACES platform can also be designed to achieve high robustness to physical damage, an important property for electronic skins because they come into the frequent physical contact with the environment. Unlike the current system used to interconnect sensors in existing electronic skins, all the sensors in ACES can be connected to a common electrical conductor with each sensor operating independently. This allows ACES-enabled electronic skins to continue functioning as long as there is one connection between the sensor and the conductor, making them less vulnerable to damage.

Exceptional sense of touch for robots, prosthetics
Robots and prosthetic devices may soon have a sense of touch equivalent to, or better than, the human skin with the Asynchronous Coded Electronic Skin (ACES), an artificial nervous system developed by a team of NUS researchers.
The new electronic skin system has ultra-high responsiveness and robustness to damage, and can be paired with any kind of sensor skin layers to function effectively as an electronic skin.


The innovation, achieved by Assistant Professor Benjamin Tee and his team from NUS Materials Science and Engineering, was first reported in prestigious scientific journal Science Robotics on 18 July 2019.
Faster than the human sensory nervous system


“Humans use our sense of touch to accomplish almost every daily task, such as picking up a cup of coffee or making a handshake. Without it, we will even lose our sense of balance when walking. Similarly, robots need to have a sense of touch in order to interact better with humans, but robots today still cannot feel objects very well,” explained Asst Prof Tee, who has been working on electronic skin technologies for over a decade in hopes of giving robots and prosthetic devices a better sense of touch.


Drawing inspiration from the human sensory nervous system, the NUS team spent a year and a half developing a sensor system that could potentially perform better. While the ACES electronic nervous system detects signals like the human sensor nervous system, unlike the nerve bundles in the human skin, it is made up of a network of sensors connected via a single electrical conductor.. It is also unlike existing electronic skins which have interlinked wiring systems that can make them sensitive to damage and difficult to scale up.

Elaborating on the inspiration, Asst Prof Tee, who also holds appointments in the NUS Electrical and Computer Engineering, NUS Institute for Health Innovation & Technology, N.1 Institute for Health and the Hybrid Integrated Flexible Electronic Systems programme, said, “The human sensory nervous system is extremely efficient, and it works all the time to the extent that we often take it for granted. It is also very robust to damage. Our sense of touch, for example, does not get affected when we suffer a cut. If we can mimic how our biological system works and make it even better, we can bring about tremendous advancements in the field of robotics where electronic skins are predominantly applied.”

ACES can detect touches more than 1,000 times faster than the human sensory nervous system. For example, it is capable of differentiating physical contact between different sensors in less than 60 nanoseconds — the fastest ever achieved for an electronic skin technology — even with large numbers of sensors. ACES-enabled skin can also accurately identify the shape, texture and hardness of objects within 10 milliseconds, ten times faster than the blinking of an eye. This is enabled by the high fidelity and capture speed of the ACES system.

The ACES platform can also be designed to achieve high robustness to physical damage, an important property for electronic skins because they come into the frequent physical contact with the environment. Unlike the current system used to interconnect sensors in existing electronic skins, all the sensors in ACES can be connected to a common electrical conductor with each sensor operating independently. This allows ACES-enabled electronic skins to continue functioning as long as there is one connection between the sensor and the conductor, making them less vulnerable to damage.

Melexis Announces Latest Triaxis Position Sensor Together With New PCB-less Packages
HELLA Brings Latest Passenger Car 77GHz Radar Technology Into Series Production
Continental And Iteris Collaborate To Explore Intelligent Infrastructure Technology
SiLC Rolls Out Chip-Integrated FMCW LiDAR Sensor
World-leading Pharmaceutical Developer Turns To TorqSense
OmniVision Announces Industry’s First 8 Megapixel Medical-Grade Image Sensors For Single-Use And Reusable Endoscopes
New Wireless Torque Technology
RoboSense Teams Up With Webasto On Smart Roof Module With Integrated MEMS LiDAR
Faraday Future Selects Velodyne As Exclusive Lidar Supplier For Flagship FF 91
NTU Singapore Launches Quantum Science And Engineering Centre
The All-round Smart Proximity Sensor Chip
New Investment In Light-powered Biosensor Accelerates The Availability Of High Quality – Low Cost Tests
Take It To The Limit With HBK’s New Force Sensor
Lumentum Expands VCSEL Array Range
Scientists Make Novel Thermal Sensor
Brewer Science Demonstrates Smart Devices & Printed Electronics Capabilities
Smart Eye And OmniVision Announce End-to-End Interior Sensing Solution
Paragraf Introduces A Graphene Hall Sensor
BAE Systems Unveils Ultra Low-Light Image Sensor
Webinar: Next Generation Optical Spectrum Analyzer
Brewer Science’s Newly Launched Smart Devices Will Be Displayed At CES
Toshiba Expands Scope Of Its Solid-State LiDAR Solution To Address Transportation Infrastructure Monitoring
Plus Selects Aeva 4D LiDAR For The Volume Production Of Autonomous Trucks
Landis+Gyr Awarded Major Smart Water Contract By South East Water
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Sensor Solutions Magazine, the Sensor Solutions Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
Live Event