Info
Info
News Article

Novel Sensors Aid Tidal Turbine Development

News

Non-contact torque sensors from Sensor Technology are playing a key role in the development of commercial-scale in-stream tidal turbines produced by Irish company, OpenHydro. The company is using these novel sensors, which are based on surface acoustic wave (SAW) technology, to accurately measure rotational speed and frictional forces in a simulator for the turbine bearings, thereby allowing it to optimise the performance and reliability of its innovative products.

OpenHydro is a technology company that designs and manufactures marine turbines to generate renewable energy from tidal streams. The company's vision is to deploy farms of tidal turbines under the world's oceans, where they will dependably generate electricity with no cost to the environment. This method of producing electricity has many benefits.

Because the turbines are submerged, they are invisible, and they produce no noise. And because they are submerged at a considerable depth, they present no hazard to shipping. An advantage that is possibly the most important, however, is that the tides are completely predictable, which means that the energy output of the turbines is equally predictable. There are no large seasonal variations and no dependence on the vagaries of the weather, as there are with many other renewable energy sources.

Reliably and efficiently harvesting energy from the tides, however, requires the use of novel technology and, in the case of OpenHydro, this takes the form of open-centre turbines that can be deployed directly on the seabed. Clearly, installation in such an inaccessible location makes reliability a prime consideration in the design and construction of the turbines. For this reason, OpenHydro carefully and comprehensively evaluates the performance of all of the components used in its turbines.

For the bearings, this evaluation involves the use of a simulator that allows the company's engineers to determine how frictional forces in the bearings vary with different loads and rotational speeds. Central to the operation of this simulator is the measurement of torque in a shaft from the motor that drives the bearing under test. With conventional sensors, it is hard to carry out this type of torque measurement accurately and reliably, but OpenHydro found that Sensor Technology's TorqSense RWT420 series sensor provided an ideal solution.

Like all TorqSense sensors, the RWT420 units depend for their operation on surface acoustic wave (SAW) transducers. These transducers comprise two thin metal electrodes, in the form of interlocking "fingers", on a piezoelectric substrate such as quartz.

When an RF signal of the correct frequency is applied to the transducer, surface acoustic waves are set up, and the transducer behaves as a resonant circuit.

If the substrate is deformed, however, the resonant frequency changes. When the transducer is attached to a drive shaft, the deformation of the substrate and hence the change in resonant frequency will be related to the torque applied to the shaft. In other words, the transducer operates as a frequency-dependent strain gauge.

Since the transducers operate at radio frequencies, it is easy to couple signals to them wirelessly. Hence TorqSense sensors can be used on rotating shafts, and can provide data continuously without the need for the inherently unreliable and inconvenient brushes and slip rings often found in traditional torque measurement systems.

"We chose the RWT420 because of its convenient wireless operation, and because it was easy for us to fix in line with an existing shaft in our experimental set up," said Kevin Harnett, Mechanical Engineer at OpenHydro. "In addition, this model of sensor has integral electronics and a serial output, which means that we can link it directly to a laptop computer in our test laboratory. This is a very straightforward and convenient arrangement.”

OpenHydro uses the RWT420 sensor in conjunction with Sensor Technology's TorqView software. This offers a choice of dial, digital bar and chart graph format display for torque, RPM, temperature and power. It also provides facilities for realtime plotting and for data recording, and can output stored results as files that are compatible with Matlab and Excel.

"We have found both the sensor and the software very easy to work with," said Kevin Harnett, "and the sensor has proved itself to be well able to withstand the tough operating conditions in our laboratory. We've also received excellent technical support from Sensor Technology, which was very helpful as we have never previously worked with sensors of this type. Overall, we're very happy with product and the service we've received, and the sensor is providing invaluable data for our development work."

Proof that this development work is yielding dividends was amply provided late in 2009, when OpenHydro deployed the first commercial-scale in-stream tidal turbine in the Bay of Fundy, Canada, on behalf of its customer, Nova Scotia Power.



SSI International 2020 dates announced!

We are delighted to announce that SSI International 2020 will take place on Tuesday 31st March and Wednesday 1st April at the Sheraton Airport Hotel, Brussels.

The event continues to grow exponentially year on year with many sponsors and exhibitors already signed up for 2020.

Don't miss out on being a part of the leading global sensor industry event

Contact us today for speaking/sponsorship/exhibition opportunities

Email [email protected] or Telephone +44(0)24 7671 8970
REAL3 Image Sensor As Named Product Of The Year
ACEINNA Launches And Demonstrates New Sensing Technologies
ASEAN Safety Sensors & Switches Market Forecast
Cars Will Change More In Next Decade Than In The Past Century
Blickfeld And Koito To Develop LiDAR That Can Be Fully Integrated Into Headlight
Mitsubishi Electric And HERE Develop Road Hazard Alert System To Improve Driver Safety
UCLA And Cardiff Team Deliver Uncooled Nanowire SWIR/MWIR Detectors
IQE Mega Foundry Gets First VCSEL Order
Compact And Cheap Lidar Could Steer Small Autonomous Vehicles
TT Electronics To Launch Integrated, High-performance Reflective Sensors
TriEye Secures $17 Million In Series A Financing Led By Intel Capital
SRI To Develop Night Vision Sensor
Fraunhofer Developing Radar Sensor To Enhance Safety Of Autonomous Vehicles
Nanusens Solves The Bottleneck Preventing MEMS Sensor Market Growing From Billion To Trillions
Panasonic Presents Solutions For Automotive And Industrial Applications At PCIM
Imec And Bloomlife Showcase Prototype Of Wearable 5-Channel ECG Chip
MIPI Alliance’s Ultra-High-Speed Automotive Standard To Be Based On Valens’ Technology
LEM Reveals New Brand Identity
Novel Sensors Aid Tidal Turbine Development
Harnessing Photonics For At-home Disease Detection
Occupant Classification Systems Market Worth Over USD 3 Billion By 2025
Infineon: New Current Sensor For Industrial Applications
RadarGlass: Functional Thin-film Structures For Integrated Radar Sensors
CEA-Leti Announces Smart-Farm Project To Lower Greenhouse Gas Emissions

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Sensor Solutions Magazine, the Sensor Solutions Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info