Info
Info

Imec And CARDIS Partners Develop Unique Photonic-Based Medical Device

News

Imec, the world-leading research and innovation hub in nanoelectronics and digital technology and Ghent University, together with Medtronic and other CARDIS project partners, have developed a prototype medical device based on silicon photonics for the screening of arterial stiffness and for the diagnosis of cardiovascular diseases such as arterial stenosis and heart failure. A clinical feasibility study with 100 patients has been successfully completed by INSERM at the Georges Pompidou European Hospital in Paris, France.

Cardiovascular disease (CVD) is among the leading causes of death globally. Early identification of individuals at risk allows for early intervention to halt or reverse the pathological process. Assessment of arterial stiffness by measurement of aortic pulse wave velocity (aPWV) is included in the latest guidelines for CVD risk prediction and it is a key marker for hypertension. However, no tools are available today to easily screen a large number of patients for arterial stiffness at a GP's office. As a consequence, many individuals remain undiagnosed.

In the Horizon 2020 project CARDIS, imec, Medtronic, and 7 other partners, have developed a prototype mobile, low-cost, point-of-care screening device for CVD. The device aims for measurement in a fast, reproducible and reliable way with minimal physical contact with the patient and minimal skills from the operator. The operating principle of the device is Laser Doppler Vibrometry (LDV), in which a very low-power laser is directed towards the skin overlying an artery. The skin's vibration amplitude and frequency, resulting from the heart beat, are extracted from the Doppler shift of the reflected beam. The device includes two rows of six beams, thereby scanning multiple points on the skin above the artery in parallel.



At the heart of the system is a silicon photonics chip containing the optical functionality of the multi-beam LDV device. The CARDIS chip was designed by the Photonics Research Group, an imec laboratory at Ghent University, and prototyped through imec's silicon photonics technology platform iSiPP50G, and has been implemented using advanced optical packaging approaches developed at the Tyndall National Institute in Ireland. The system has then been integrated into a handheld device and validated for human use by Medtronic.

A clinical feasibility study at the Georges Pompidou European Hospital in Paris has collected a substantial clinical dataset, both from healthy subjects as well as from patients with cardiovascular conditions. The quality of the device readings was found to be very good and adequate measurement results could be obtained in all subjects. Also, the measurement data and variability within sessions were in line with data and variability acquired by reference techniques. A full dataset is now available and in-depth analysis will be performed both at INSERM and at the biomedical engineering department of Ghent University with the support of Medtronic. Moreover, further clinical feasibility studies are planned in the Academic Hospital of Maastricht (The Netherlands).

“The CARDIS device was well accepted by all patients, and it was considered useful and well tolerated,” states Dr. Pierre Boutouyrie, the cardiologist in charge of the feasibility study. “Feasibility of signal acquisition is excellent since a useful signal was acquired in 100% of the patients. Tolerance was excellent too, the time to get useful signals was less than 10 min, and patients barely noticed that a measurement was performed.”

Roel Baets, head of the Photonics Research Group (imec/UGent), concludes: “Silicon photonics is a powerful technology that combines the unique sensing capabilities of photonics with the low-cost and miniaturization capabilities of silicon semiconductor technology. It's exciting to know that our silicon photonic chip and prototype medical device hold the promise to change the lives of so many patients with cardiovascular diseases.”

In a next step, a small series of the device will be produced to perform a clinical feasibility study on a larger group of patients and over a longer period of time. If this feasibility study demonstrates the ability of the technology to detect cardiovascular diseases at an early stage, high volume production can be initiated. One of the benefits of the silicon photonics technology is that at high volumes, the chip can be produced at low cost.



SSI International 2020 dates announced!

We are delighted to announce that SSI International 2020 will take place on Tuesday 31st March and Wednesday 1st April at the Sheraton Airport Hotel, Brussels.

The event continues to grow exponentially year on year with many sponsors and exhibitors already signed up for 2020.

Don't miss out on being a part of the leading global sensor industry event

Contact us today for speaking/sponsorship/exhibition opportunities

Email info@sensors-international.net or Telephone +44(0)24 7671 8970
POET Launches Methane Gas Sensing Laser At SPIE
New Automotive Grade Current Sensor IC Improves Safety
Sensor Searches Demanding Application
LETI Announces Protoype Of Low-cost Photo-acoustic Sensors For Gas Detection
Sensors And Artificial Intelligence – A Powerful Symbiosis
CEA-LETI Builds Prototype Of Next-gen Mid-infrared Optical Sensors
ACEINNA Launches High Accuracy Current Sensors Based On AMR Technology
Collaboration Sparks Sustainable Electronics Manufacturing Breakthrough
STMicroelectronics Reveals Motion Sensor With Machine Learning
Novelda’s Disruptive Radar Technology Powers The Digital Sensor Revolution
New Data Fusion Development Tool For Sensors Like Radar, Camera And Lidar
3D LiDAR Technology Brought To Mass-Market With Livox
Rockley Photonics Targets High-volume Sensing And Imaging Markets
Formula One Motor Firms Successfully Branch Into Other Sectors
LG And Infineon To Introduce Front-facing Time-of-Flight Camera
Quantum Sensors That Improve The Sensitivity Of Magnetic Resonance
1551V Sensor Enclosures For The IoT
RoboSense Provides LiDAR For The Autonomous Driving Shuttle Bus Gacha
TÜV SÜD And DFKI To Develop “TÜV For Artificial Intelligence”
Velodyne Achieves Half A Billion Dollars In LiDAR Sensors Shipped
New Vision Sensor Targets Error Proofing, Identification And Robotic Guidance Applications
Level Five Supplies Confirms Five New Distribution Agreements To Represent UK-specific And Pan-European Technology Developers
Smart Sensors For Condition Monitoring
II-VI Introduces 56 Gb/s PAM4 VCSEL Arrays

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Sensor Solutions Magazine, the Sensor Solutions Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info