+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

The all-seeing eyes of Industry 4.0

News

Industry 4.0 can be described as an eye-opening experience. The next phase in the digitalisation of the manufacturing sector, driven by the astonishing rise in data volumes, computational power and connectivity, allows manufacturers to see beyond the surface of their plant to uncover new ways of optimisation. One type of sensor that acts as a manufacturer’s eyes is the optical encoder. Here, Richard Mount Director of Sales at mixed signal ASIC specialist Swindon Silicon Systems, explores the technology and its supporting ASICs.

An optical encoder is a type of motion transducer that is commonly used to measure motion and provide feedback information in a closed-loop motion control system. This information can come in the form of several parameters, including direction, position and velocity of a moving part.

There are two types of optical encoder, reflective or transmissive. Optical encoders are typically made form a light source, a high-speed optical sensor, a readhead window and either an absolute or incremental scale to diffract or reflect the light source to provide positional data. The sensor may have additional elements to guide and shape the light such as lenses and beam splitting prisms. Its operation can be initiated by sending a demand to the readhead, instructing it to capture the position on the scale at that instant. The head responds by flashing a high-power LED source to illuminate the scale.

Crucially, its timing is controlled to preserve the relationship between demanded and reported position, one of the essential features for very high specification motion systems. Once the photons are captured by the photodetector, this signal is then digitised via an analogue-to-digital converter (ADC) and sent to a powerful digital signal processor (DSP) to obtain a relatively coarse position from the code embedded in the scale. After final error checking procedures, this positional information is then available to provide highly accurate position measurement to within one nanometre.

Optical encoders can be amazingly precise, making them a desirable choice for many applications where resolution matters. Potential applications could include, for example, providing precise and reliable motion feedback in robotics applications, in CNC machines to ensure machine tools operate at appropriate speeds, in automated dispensing of products and a myriad of other specialist uses.

Data decoding

So, how exactly can the data detected from the encoder turn into actionable insights? In an optical encoder, the sensing element is likely to be a phototransistor or photodiode. The photons from the incoming light are converted into an electrical signal, which can be conditioned and amplified. That signal is digitised with the output used for measurement data.

This processing unit will calculate the position from the encoder and can recognise events such as reference marks being passed, overspeed conditions and generating immediate interruptions towards the host system.

When an optical encoder is first developed, the constituent components may be commercial off-the-shelf (COTS) discrete components or integrated circuits (ICs). This can provide an adequate solution, particularly when production volumes are low. However, to truly ensure a product separates itself from the competition, it’s favourable to use ASIC technology.

ASIC technology brings many benefits. First, a reduced component count results in a smaller and more cost-effective product. Performance is enhanced with a higher speed and higher resolution encoder coupled with a lower lag. These benefits, used by a skilled ASIC design and supply company, will help a product stand out in the market.

For many customers, the protection of their Intellectual Property (IP) is extremely valuable, and ASICs provide this. Additional benefits, such as protection against obsolescence, smaller size, smaller power consumption and the knowledge that your product is unique further makes the ASIC route an attractive option for all optical encoder developers. An ASIC design partner, such as Swindon, will be able to assess a customer’s system and provide an optimised solution, designed specifically for their application requirements.

An optical encoder may not be the literal eyes of a manufacturer, but it certainly offers a layer of vision into their operations. While precise positioning can be supported through off-the-shelf circuitry, choosing an ASIC will undoubtedly afford many opportunities for an optimised and market leading product.

University College London (UCL) HyperMile Racing Team Unveils Breakthrough Powertrain Innovation
ASMPT Showcase CMAT-S: high-speed lens assembly and alignment in one at AutoSens
Melexis introduces MLX90427 position sensing for steer-by-wire
More accurate force measurement
Ultra-flat Baumer inductive sensor is product of the year
OMNIVISION Announces Automotive Image Sensor with TheiaCel™ Technology Now Compatible with NVIDIA Omniverse for Autonomous Driving Development
New standards in the assessment of water quality: Fraunhofer IPMS develops new multi-sensor system for water analysis
Imec demonstrates readiness of the High-NA EUV patterning ecosystem
Phlux’s 12X more sensitive IR sensors transform LiDAR, rangefinder, and optical fibre test performance
Melexis Triphibian™ revolutionizes the world of MEMS pressure sensors
FRAMOS Launches - FSM:GO The Next Generation Embedded Sensor Module
Microchip Launches 10 Multi-Channel Remote Temperature Sensors
Praxis air quality sensors selected for 41 locations across Greater Manchester
XENSIV™ stray field robust linear TMR sensor enables high-precision length measurements in industrial and consumer applications
OMNIVISION Announces First 3MP SoC Image Sensor for LED Flicker-Free, High Dynamic Range Automotive Cameras
OMNIVISION Announces High-Performance OX01J Image Sensor for Surround- and Rear-View Cameras
Murata announces the SCH16T-K01, a next generation 6DoF inertial sensor
TI debuts new automotive chips at CES
New Baumer sensor detects point levels despite films and adhesion
Renesas Introduces 32-bit RX MCU with High-Speed, High-Precision Analog Front End for High-End Industrial Sensor Systems
Baumer level sensor PLP70 wins AutomationsBest Award
Renesas Develops Cost-Effective, Highly Accurate and Robust Induction Motor Position Sensing Technology
onsemi Introduces Lowest Power Image Sensor Family for Smart Home and Office
New high-speed InGaAs area image sensor with a wider dynamic range, and increased speed and accuracy for plastic sorting and similar applications
Mouser Extends Motion and Positioning Range with New IMU, AHRS and Accelerometer Solutions
Quantum technologies: Bosch aims to use sensors to take a leading position
PNE AG continues to be successful in onshore wind power tenders
New functions added to soil sensors -Measurements available for synthetic culture soil such as rock wool and coconut peat
High-precision microsensor technology for a wide application range
Integrated Graphene doubles footprint to meet global demand and to scale up production
Food Research All Washed Up
Renesas to Support Public Building Air Quality Standards in Environmental Sensors
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the Sensor Solutions Magazine, the Sensor Solutions Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: